Polar Instruments Ltd. Garenne Park St. Sampson Guernsey Channel Islands GY2 4AF ENGLAND http://www.polar.co.uk

Fax: +44 (0)1481 252476 Email: mail@polar.co.uk

MAN130-2011

TONEOHM 950 SERVICE MANUAL

TONEOHM 950 SERVICE MANUAL POLAR INSTRUMENTS LTD. HARDWARE WARRANTY

- 1. <u>Product Warranty</u>. Product hardware is warranted to be free from defects in material and workmanship during the Warranty Period (as defined below). Product hardware is warranted to conform substantially to Polar's then current (as of the date of Polar's product shipment) published user documentation during the Warranty Period. The Warranty Period is twelve (12) months. Product support beyond these periods may be available at additional cost consult Polar for details.
- 2. <u>Warranty Claims</u>. Polar shall incur no liability under this warranty if the end user fails to provide Polar with notice of the alleged defect during the applicable Warranty Period and within seven (7) days of delivery to end user or, if the defect would not have been reasonably apparent on inspection, within seven (7) days of its discovery by end user. After receiving such notice, Polar will notify the purchaser of its designation of one of the following problem resolution methods:

Return to Factory: The allegedly defective goods must be returned to Polar within seven days of Polar's notice and in accordance with Polar's instructions advised at the time.

Other: Polar will use commercially reasonable efforts to repair, correct or work around the problem by means of telephone support or other means reasonably determined by Polar.

Polar shall incur no liability under this warranty if Polar's tests disclose that the alleged defect is due to causes not within Polar's reasonable control, including alteration or abuse of the goods. Under the *Return to Factory* alternative, if a Product is determined not to be defective or to have a defect due to causes not within Polar's reasonable control, Polar reserves the right to apply a processing charge.

- 3. <u>Damage in Transit</u>. End user must notify Polar and the carrier of any claim for damage in transit within two (2) days of receipt of the damaged merchandise. Failure to do so may result in the carrier and/or Polar refusing to accept liability in which case end user must pay the purchase price as if the hardware had been delivered without damage.
- 4. <u>Polar's Liability</u> Polar's liability, and end user's sole and exclusive remedy, shall be limited to the express remedies set forth in this Polar Hardware Warranty.
- 5. <u>Disclaimer of Warranties</u>. POLAR MAKES NO OTHER WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, REGARDING PRODUCTS. ALL OTHER WARRANTIES AS TO THE QUALITY, CONDITION, MERCHANTABILLITY, FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT ARE EXPRESSLY DISCLAIMED.
- 6. <u>Limitation of Liability</u>. POLAR SHALL NOT BE RESPONSIBLE FOR DIRECT DAMAGES IN EXCESS OF THE PURCHASE PRICE PAID BY THE END USER OR FOR ANY SPECIAL, CONSEQUENTIAL, INCIDENTAL, OR PUNITIVE DAMAGE, INCLUDING, BUT NOT LIMITED TO, LOSS OF PROFITS OR DAMAGES TO BUSINESS OR BUSINESS RELATIONS, WHETHER OR NOT ADVISED IN ADVANCE OF THE POSSIBILITY OF SUCH DAMAGES, THE FOREGOING LIMITATIONS SHALL APPLY, NOTWITHSTANDING THE FAILURE OF ANY EXCLUSIVE REMEDIES.

DECLARATIONS

European Community Directive Conformance Statement

Refer to the Operator Manual to determine conformance with European Community Directives.

SAFETY

WARNING The service instructions contained in this manual are for use by qualified electronic service personnel only.

WARNING

The LIVE and NEUTRAL lines on this unit are BOTH fused.

When the unit is connected to its supply, the opening of covers or removal of panels is likely to expose dangerous voltages.

GROUNDING

This unit must be earthed (grounded); do not operate the instrument with the safety earth disconnected. Ensure the instrument is connected to an outlet with an effective protective conductor terminal (earth). Do not negate this protective action by using an extension cord without a protective conductor.

Note: This instrument is fitted with 3-wire grounding type plug designed to fit only into a grounding type power outlet. If a special local plug must be fitted to the power cord ensure this operation is performed by a skilled electronics technician and that the protective ground connection is maintained. The plug that is cut off from the power cord must be safely disposed of.

Power cord color codes are as follows:

Europe

brown	live
blue	neutral
green/yellow	earth (ground)

United States

black	live
white	neutral
green	ground

POWER SUPPLY

Check that the indicated line voltage setting corresponds with the local mains power supply. See the rear panel for line voltage settings. Instruments with a serial number prefixed with a letter (e.g. A1234) are configured for 90 - 110 Volts only.

Changing the line voltage settings on this instrument must only be performed by a skilled electronics technician. Instructions for changing the line voltage settings are contained in Section 5.

OPERATION

This manual contains instructions and warnings which must be observed by the user to ensure safe operation. Operating this instrument in ways other than detailed in this manual may impair the protection provided by the instrument and may result in the instrument becoming unsafe. Retain these instructions for later use.

The unit is designed for use indoors in an electrical workshop environment at a stable work station comprising a bench or similar work surface.

Use only the accessories (e.g. test probes and clips) provided by Polar Instruments.

The instrument must be maintained and repaired by a skilled electronics technician in accordance with the manufacturer's instructions.

If it is likely that the protection has been impaired the instrument must be made inoperative, secured against unintended operation and referred to qualified service personnel.

Protection may be impaired if, for example, the instrument:

- Shows signs of physical damage
- · Fails to operate normally when the operating instructions are followed
- · Has been stored for prolonged periods under unfavourable conditions
- · Has been subjected to excessive transport stresses
- Has been exposed to rain or water or been subject to liquid spills

CAUTION

Electrical Isolation

Always disconnect the board under test from the local mains supply (including ground) before using this instrument.

Static Sensitive Devices

This unit contains Static Sensitive Devices. Static discharge can damage some electronic components. Care must be taken when handling these components. Observe appropriate precautions to avoid damage.

SPECIFICATIONS

Track Resistance

RANGES	[Ω], 200mΩ, 2Ω, 200Ω, 20KΩ. Instruments with serial numbers below 005975 have a 2KΩ range instead of 200Ω.
ACCURACY	$\pm 6\%$ in 200m Ω , $\pm 5\%$ in 2Ω
	±4% in 200Ω, ±5% in 20KΩ
[Ω] RANGE	High sensitivity, uncalibrated.
	Approximately $40m\Omega$ full scale.
PROBE VOLTAGE	60mV maximum.
INDICATION	Tone and meter in all ranges.
PROBE PROTECTION	Momentary contact up to 250V.

Track Current

RANGES	200mA, 2A, TRACE.
ACCURACY	\pm 15% in 200mA, 2A for track resistance between 25m Ω and 500m Ω . Reading proportional to current when UNCALIBRATED LED is lit.
	UNCALIBRATED LED lit during ranging.
	Reading in TRACE is proportional to detected magnetic field strength.
TRACE SENSITIVITY	Capable of detecting current flow with 200Ω resistance across Drive
	Source.
PROBE VOLTAGE	600mV maximum in 200mA, 2A.
	Not applicable in TRACE.
INJECTION CURRENT	250mA maximum.
	Not applicable in TRACE.
INDICATION	Tone and meter in all ranges.
PROBE PROTECTION	Momentary contact up to 250V in 200mA, 2A. Not applicable in TRACE.
	····· ••• ••• ••• •• •• •• •• •• •• •• •

Track Voltage

RANGES	2mV, 20mV, 20V.
ACCURACY	±4%, ±15µV.
INPUT RESISTANCE	120Ω in 2mV, 20mV.
	1MΩ in 20V.
INDICATION	Meter in all ranges. Tone in 2mV, 20mV.
PROBE PROTECTION	Momentary contact up to 250V in 20V.
	30V in 20mV, 2mV.

Plane Shorts

INDICATION	Tone, uncalibrated meter and fault direction arrows.
SENSITIVITY	Adjustable for differing plane resistance. Capable of detecting shorts
	up to 20Ω.

Plane Stimulus

OUTPUT VOLTAGE	550mV maximum. Active only when PLANE SHORTS is ACTIVE and
	outputs are connected to a plane.
OUTPUT CURRENT	700mA RMS maximum.
PROTECTION	Each output separately fused (5A Fast).

Drive Source

	0 to 550mV, adjustable. AC in TRACE, DC in all other ranges.
PROTECTION	Protected to ± 30V.

ENVIRONMENTAL OPERATING CONDITIONS

The instrument is designed for indoor use only under the following environmental conditions:

Altitude	Up to 2000m
Temperature	+5°C to +40°C ambient
Relative humidity	RH 80% maximum at 31°C — derate linearly to
	50% at 40°C
Mains borne transients	As defined by Installation Category II
	(Overvoltage Category II) in IEC664
Pollution Degree	2 (IEC664)

Power Requirements

 $230V \pm 10\%$, $115V \pm 10\%$ or $100V \pm 10\%$ at 50/60Hz, 25VA.

Fuses

Below Serial Nº. 11244

One fuse

230V	160mAT
115V	315mAT

Serial Nº. 11265 – 12212

Two fuses as above

Serial Nº. 12213 up

230V	125mAT
115V	250mAT

Physical characteristics (excluding accessories)

Dimensions 305mm (12 in.) wide. 150mm (5.9 in.) high. 275mm (10.8 in.) deep.

Weight	3.5 kg.
Flammability	Enclosure to UL94 V-0.

SYMBOLS

These sockets are for connecting only Polar Instruments probes and connectors for use as described in the Operator Manual. To prevent damage to this product and to ensure its safe use observe the specifications given in this manual when connecting to terminals marked with this symbol.

ACCESSORIES

Standard Accessories

Needle Probes	ACC152
950 Plane Probe/Clip assembly	ACC113
950 Current Trace Probe assembly	ACC114
950 Stimulus Lead (Set of 4)	ACC134
Lightweight Headphones	EPM115
Optional Accessories	
Bare-board Stimulus Lead set (0.025")	ACC121/XG25
Bare-board Stimulus Lead set (0.031")	ACC121/XG31
Bare-board Stimulus Lead set (0.040")	ACC121/XG40
Bare-board Lead set (universal)	ACC154
Service Manual	MAN130

CONTENTS

DECLARATIONS	v
European Community Directive Conformance Statement	
SAFETY	
WARNING	
GROUNDING	
POWER SUPPLY	
OPERATION	
CAUTION	
Electrical Isolation	vii
Static Sensitive Devices	vii
SPECIFICATIONS	viii
ENVIRONMENTAL OPERATING CONDITIONS	
Power Requirements	
Fuses	IX
Physical characteristics (excluding accessories)	
SYMBOLS	
ACCESSORIES	
Standard Accessories	
Optional Accessories	x
SECTION 1 PERFORMANCE CHECK	1_1
MAINTENANCE AND CALIBRATION OF INSTRUMENTS	
Performance Check	
Adjustment Procedure	
Recommendations for Routine Maintenance	
PERFORMANCE CHECK	
Equipment required	
Procedure	
SECTION 2 – ADJUSTMENT PROCEDURE	
ADJUSTMENT PROCEDURE	
Equipment required	
Display Calibration	
A2D Calibration	
Resistance Calibration	
Current range adjustment	
Current offset calibration — Version 8 firmware and above	
Current Trace	
Plane Shorts	
SECTION 3 – CIRCUIT DESCRIPTION	
TONEOHM 950 THEORY OF OPERATION.	
Main Operating modes.	
Track resistance	
Track Current	
Trace	_
Track Voltage	
Hack Vollaye	

TONEOHM 950 SERVICE MANUAL

Plane Shorts	
Detailed Theory of operation	
Microvolt Amplifier	
Trace Amplifier	
Current Source	
Plane Amplifier and Vector Discriminator	
Vectored Plane Stimulus	
Drive Source	
Tone Generator	
A2D2A	
Power Supply.	
Microprocessor	
Front Panel (Schematics 1 and 2)	
SECTION 4 – DISMANTLING INSTRUCTIONS	
Removing the cover	
SECTION 5 – LINE VOLTAGE AND FUSE CHANGING	
LINE VOLTAGE SELECTION AND FUSE CHANGING	
Changing the line voltage setting	
SECTION 6- FAULT DIAGNOSIS	
TROUBLESHOOTING HINTS	
	- 4
SECTION 7 – MAINTENANCE AND CLEANING	
Cleaning	
Technical Support	
Instrument repair	
SECTION 8 – REPLACEMENT PARTS	8-1
FRONT PANEL KIT	
MAIN BOARD KIT	
SECTION 9 – SCHEMATIC DIAGRAMS	Q_1
	······································

SECTION 1 PERFORMANCE CHECK

MAINTENANCE AND CALIBRATION OF INSTRUMENTS

For most of Polar Instruments' products there are two maintenance procedures — the **Performance Check** and the **Calibration.** Some instruments may have a single (combined) procedure.

Performance Check

The Performance Check (or Checkout Procedure) is used to verify the basic functions of the instrument. This does not usually require the removal of instrument covers, but may require the use of external test equipment. This procedure is not intended to verify the calibration of the instrument.

Adjustment Procedure

The Adjustment Procedure (or Calibration Procedure) is used to check and, if necessary, adjust the instrument's calibration settings. Before carrying out the Adjustment Procedure the instrument's Performance Check (if applicable) should be carried out, and any detected defects should be rectified. *The Adjustment Procedure and rectification of defects should only be carried out by qualified technician.*

Recommendations for Routine Maintenance

Where a Performance Check is available for an instrument this may be used as required to confirm the basic operation of the product.

To maintain the calibration of an instrument it is recommended that its Calibration/Adjustment Procedure is carried out at intervals not exceeding 12 months.

PERFORMANCE CHECK

Equipment required

- DC voltage source, variable from 1V to 10V and accurate to 0.1%.
- High tolerance resistors (0.5%) of the following values: 10KΩ, 1KΩ (serial numbers below 005975 only), 200Ω, 100Ω, 1Ω and 0.1Ω.

Procedure

- Switch on and allow the 950 to warm up for 15 minutes.
- 1. Plug in the Needle Probes and press 20V.
- 2. Apply 10V DC to the probes and check that the reading is $10V \pm 4\%$.
- 3. Connect a 1K Ω 0.5% and a 1 Ω 0.5% resistor in series.
- 4. Apply 10V to the series resistors. This produces 10mV across the 1 Ω Resistor.
- 5. Press 20mV and check that the reading across the 1 Ω resistor is 10mV ± 4%.
- 6. Adjust the voltage source from 0 to 20V and check that the tone varies in pitch. A steady warble should be generated with a negative voltage.
- 7. Apply 1V to the two resistors and press 2mV.
- 8. Check that the reading across the 1 Ω resistor is 1mV ± 4%.
- 9. Check that varying the voltage generates varying tones. No tone should be produced below about 50uV.
- 10. Press $20K\Omega$ and measure a $10K\Omega$ 0.5% resistor. The reading should be within 4%. A warble may be generated in this range.

(a) Serial numbers below 005975: Press $2K\Omega$ and measure a $1K\Omega$ 0.1% resistor. The reading should be within 4%.

(b) Serial numbers 005975 up:

Press 200 Ω and measure a 100 Ω 0.1% resistor. The reading should be within 4%.

- 11. Press 2 Ω and measure a 1 Ω 0.1% resistor. The reading should be within 4%.
- 12. Apply solder to the wire ends of a $100m\Omega 0.5\%$ resistor.
- 13. Press $200m\Omega$ and measure the resistor by pressing the probe tips into the solder. The reading should be within 4%. Readings vary with the pressure applied to the probes.
- 14. Press TRACE and connect the Drive Source leads across a 200 Ω resistor. Turn the DRIVE SOURCE knob fully clockwise.
- 15. Hold the Current Trace Probe tip near to one of the Drive Source leads and align it for maximum response.
- 16. Check that the display shows 20 or more.
- 17. Connect the Blue and Yellow Stimulus lead together. Press PLANE twice check for the warning bell and that the instrument returns to Standby. Leave leads connected.
- 18. Connect the Red and Green Stimulus lead together. Press PLANE once. Check for ACTIVE LED.
- 19. Connect the red and black Drive Source leads across a 0.1Ω resistor. Attach the Plane Clip to the black Drive Source lead. Probe the other end of the resistor with the probe.

- 20. Slowly turn the DRIVE SOURCE from minimum to maximum (i.e. clockwise). As the control is rotated, check that initially all direction arrow LEDs are on, then the upper LED only, then all LEDs are off. At the same time the tone goes from high to low then off.
- 21. Reverse the connections to the Plane Probe and Clip. Rotate DRIVE SOURCE from maximum to minimum (i.e. anti-clockwise). As the control is rotated, check initially for no arrows or tone, then rising tone and bottom arrow on, finally all arrows on.
- 22. Disconnect the Red and Green Stimulus lead. PLANE should automatically ring warning bell and return to standby. Disconnect the Plane Probe and Clip from the 0.1Ω resistor.
- 23. Turn DRIVE SOURCE to maximum. Select 20mV, connect the Needle Probes and drive source leads across the 0.1Ω Resistor and note reading.
- 24. Select 200mA. Check that reading is: (10x Reading noted above) ±10%
- 25. Turn DRIVE SOURCE to minimum. Check for 0 ±1mA.
- 26. Disconnect all cables.

SECTION 2 – ADJUSTMENT PROCEDURE

ADJUSTMENT PROCEDURE

WARNING: Hazardous voltages are exposed on the PCB when the cover is removed. This procedure should only be performed by a technically qualified person aware of the hazards and taking all reasonable care.

Equipment required

- High tolerance(0.1%) voltage source 10V and 10mv.
- High tolerance(0.1%) 1Ω and $100m\Omega$ resistors.
- DVM
- Power Supply.

Before connecting to the supply:-

- 1. CHECK THE MAINS FUSES see SPECIFICATIONS.
- 2. Connect the 950 to the appropriate line voltage and turn on.
- 3. CHECK the front panel lights sequence and that the 950 stops in the 20V range. PUSH 20mV.

Display Calibration

- 1. Connect the Needle Probes to the 10mV source.
- 2. Adjust POT R196 (top RHS of Front Panel board) for a display of 10.00mV.

A2D Calibration

- 1. Turn the power off then hold down 2mV and PLANE re-apply power.
- 2. Connect needle probes to 10mV source.
- Observe the Active and Standby (Pass and Fail) LEDs while adjusting R163 the tone will decrease as the calibrated position is approached. When ACTIVE illuminates the A2D is calibrated.
- 4. PUSH 2mV. The 950 will beep and enter the 20V Range.

Resistance Calibration

1. SELECT the 2 Ω range. Place the probes across the 1 Ω resistor. ADJUST R713 (R30 for instruments below S/N 012213) for 1.000 Ω reading ± 3 Counts.

Current range adjustment

(Serial Nº. 012213 and above — below this Serial Nº. there is no adjustment.)

- 1. Select the 200mA range. Drive source control fully clockwise.
- 2. Connect the drive source and the DVM across the high tolerance 1Ω resistor.
- 3. Note the DVM reading.
- 4. Apply the needle probes across the resistor and adjust R 30 for the same reading as the DVM \pm 5 counts.

Current offset calibration — Version 8 firmware and above

- 1. Set the current limit to MINIMUM switch the supply ON.
- 2. Select 2A on the 950.
- 3. Connect the power supply across the $100m\Omega$ resistor.
- 4. Adjust the current limit to 1.6A.
- 5. Using the Needle Probes measure across the $100m\Omega$ resistor CHECK for 1.44 to 1.76A on the 950 display.

(Version 8 firmware and above, main board version 5 and above.) Select the most accurate 1.6A reading by optionally placing a jumper on one of the 4 locations adjacent to U46.

No jumper is the mid setting, H fixes slight under-reading, HH corrects large underreading. L fixes slight over-reading, and LL corrects large over-reading.

(Version 8 firmware, main board version 4 or below.) Connect a 20 way integrated circuit test clip to U46 Shorting Pin 17 to Gnd corresponds to HH 14 H

14	п
13	LL
8	L

No connection is nominal setting.

Once the best setting is established solder a link from the appropriate pin (if any) to ground.

6. Version 7 firmware and below offer no fine adjustment.

Current Trace

- 1. Connect Trace / Drive Source Probe.
- 2. Push TRACE. Adjust the volume as desired, short the drive source leads together and turn the drive source to MAXimum.
- While holding the probe against the Drive Source lead ADJUST R94 for the highest displayed reading (> 500).

Move the probe away from the Drive Source leads,

4. CHECK Tone turns off and displayed reading is less than 25.

Plane Shorts

- 1. CONNECT the 4 Plane Stimulus leads BLUE to YELLOW and RED to GREEN
- 2. Push PLANE twice to enter ACTIVE mode.
- 3. CONNECT the Plane Clip to the Plane Probe. Adjust R85 for a reading of 00.0 ± 3 counts.

(Ser N° 012213 up) Adjust R716 (located near U18, behind copper shield) for minimum (or most negative) reading. Re-adjust R85 for 00.0 \pm 3 counts.

4. Reduce the Variac to:

190V (240V instruments) 95V (120V instruments) 85V (Japanese instruments)

- 5. Check that PLANE remains ACTIVE
- 6. Remove the Green clip from the demo board and check the 950 goes to standby. Reconnect the clip and select ACTIVE.
- 7. Repeat for the yellow clip.
- 8. Disconnect all probes.

SECTION 3 – CIRCUIT DESCRIPTION

TONEOHM 950 THEORY OF OPERATION.

The TONEOHM 950 consists of the following functional blocks.

1. Microvolt Amplifier	Amplifies/attenuates PCB track voltages, and is used in conjunction with the internal current source for the calculation of track resistance and current.
2. Trace Amplifier	Amplifies and rectifies the low level AC signal from the Trace probe to provide a DC voltage output proportional to magnetic field.
3. Current source	Provides a range of currents for resistance and non- invasive current measurement.
4. Plane Amplifier and Vector discriminator	Amplifies low level plane signals, separates vector and magnitude components.
5. Vectored Plane Stimulus	Provides the four vectored signals for Plane Shorts mode.
6. Drive Source	User adjustable constant current DC supply for non- invasive current measurement/ µV measurement. Also operates in a.c. for non-contact current tracing.
7. Tone Generator	Voltage controlled oscillator which provides varying tone proportional to meter reading.
8. A2D2A	Analog to digital convertor used for providing microprocessor with data for non-invasive current measurement, also used for internal calibration and QC. Digital to analog converter provides output for tone generator in 2A and 200mA modes and output to front panel meter.
 9. Power Supply 10. Microprocessor 	 ± 5V analog and digital supplies. 12/5V floating supply for drive source. 4V a.c. supply for vectored plane stimulus. Controls hardware and performs current calculation.
11. Front Panel	Keyboard and display D2A.

Main Operating modes.

Track resistance

Current is injected into the track with the needle probes using the CURRENT SOURCE module, the μ V AMPLIFIER conditions the resulting track voltage and displays the result directly on the LCD.

Track Current

200mA, 2A.

These ranges compute the current by measuring the voltage drop across a length of track carrying the fault current and then injecting a known current in addition to the fault current. The voltage drop is then remeasured and the resistance calculated hence the fault current can be derived.

e.g.

Track Resistance = $\frac{V \text{ due to fault I} - (V \text{ due to fault I} + V \text{ due to injected I})}{\text{Injected I}}$

Hence Fault Current = $\frac{V \text{ due to fault I}}{\text{Track Resistance}}$

The 950 first reads the track voltage with the μ V AMPLIFIER and uses the A2D2A to digitise the value. The amplifier auto-ranges if necessary, then a small current is injected from the CURRENT source, the track voltage is read again, if the second voltage is not significantly different (<10% higher) the 950 injects more current. This process reiterates up to a maximum of 240mA injection at which point the microprocessor will force a calculation and send the resultant value to the D2A. This is sent both to the front panel meter and via the conditioning network on U59 (Schematic 1) to the TONE GENERATOR.

During the initial ranging and for on track resistances below approximately $25m\Omega$ the un-calibrated indicator will illuminate. Once ranging has taken place the initial injection/ attenuation settings are held and the current is calculated continuously. The 950 will only measure positive conventional current. If the probes are reversed the condition will be indicated on the front panel and the display will blank.

Trace

In TRACE mode the 950 uses an inductive pick up to detect an ac current in a faulty track. The ac current is supplied from the DRIVE SOURCE leads, the detected signal is conditioned by the TRACE amplifier and then switched to the LCD and TONE GENERATOR by U25 (sheet 6) and U59 (sheet 1) respectively.

Track Voltage

The μ V AMPLIFIER conditions the track voltage and sends it to the LCD via U25 (sheet 6) and to the TONE GENERATOR. The tone is disabled on the 20V range.

Plane Shorts

In Plane Shorts mode the 950 uses VECTORED PLANE Stimulus to set up a field pattern on the plane under test, the Plane Clip references the short to ground and the voltage measured on the Plane Probe is an a.c. signal providing both magnitude and position information. The PLANE AMPLIFIER and VECTOR DISCRIMINATOR resolve this into a magnitude signal (sent to the LCD and TONE GENERATOR and a vector signal for the 4 direction arrows on the front panel).

Detailed Theory of operation.

Microvolt Amplifier

JP11 is the input connection from the probe sockets. Relays K1, 2 and 3 provide \div 1, \div 10 and \div 1000 attenuation setting for the main Amplifier U1. K4 provides a switchable 120 Ω input resistance used in 2mV and 20mV.

U1 is a low offset voltage chopper stabilised amplifier with gains of x10 or x100 (selected by the analog switch U24 on the Tone Generator schematic). The network on the output of U1 provides an idealised response for the tone generator. "HI" and "LO" are the calibrated outputs to the front panel meter (via analog switch U25 on sheet 6).

U59 and associated components provide a second nonlinear amplifier for use in TRACE, PLANE, 200mA and 2A modes.

Trace Amplifier

Refer to Microvolt Amplifier schematic.

The DRIVE Source provides PCB tracks with an 80kHz (approximately) current; this is detected by the Trace Probe. The low level signal is first amplified and filtered by U2B, further amplification and conditioning is provided by nonlinear amplifier U2A, the a.c. signal is then rectified and smoothed by active rectifier U2D; after buffering and attenuation U25 (A–D Converter schematic) directs the output to the front panel meter.

Current Source

Refer to A–D Converter schematic

The current source provides a range of known dc currents for resistance and non-invasive current measurement.

The loop formed by U5A, U62A, Q2, D13 and associated components provide a low impedance 56mV or 0.56V (approximately) source. The microprocessor is both able to select the voltage via U24 on the Tone Generator schematic, or gate the supply via Q2 and U62B. Q2 and D13 also afford protection against inadvertently connecting high voltages to the probes.

The voltage is applied via relays R1 to R7 across a series resistance and via the Kelvin connected Needle Probes, to provide a known current through the track resistance under test.

In order to correct for offsets caused in the needle probes when measuring low resistances, U4 and associated components apply offset to the μ V Amplifier in order to achieve a zero reading in 2 Ω and 200m Ω ; in the [Ω] range offset is applied to give a stable reading but a zero is not achieved when the probes are shorted.

Plane Amplifier and Vector Discriminator

Refer to Plane Input Amplifier Schematic

The Vectored Plane Stimulus sets up a field on the plane under test such that when the plane is probed the following waveforms are detected:

above the short	two positive going half sine waves
below the short	two negative going half sine waves
left of the short	a positive followed by a negative half sine wave
right of the short	a negative followed by a positive half sine wave

The magnitude of the half waves detected increases with increasing distance from the short.

The 950 extracts this information as follows:

U12 Amplifies the low level signal from the Plane Probe; this chopper-stabilised amplifier is clocked by a signal synchronous with the Vectored Stimulus to minimise clock noise on the a.c. output signal. JP12 connects to the Drive Source/Sensitivity control to allow user adjustment of sensitivity.

U6 forms an active rectifier for the incoming signal which is taken to sample-and-hold gate U8, along with the unrectified component. U8 is clocked and gated so that the peak amplitudes of each halfwave in both rectified and unrectified form are sampled and held on C11, C12, C13 and C16. Magnitude signals on C11 and C12 are added then switched via U25 (A–D Converter schematic) and U59 (Microvolt Amplifier schematic) to the LCD and TONE GENERATOR respectively.

C13 and C16 hold the unrectified component of the plane signal; here only their polarities are of interest, these are detected and converted to TTL levels by comparators U10 and U14 the two resultant signals (QUADRANT0 and QUADRANT1) are taken to the front panel and decoded to illuminate the appropriate direction arrow.

Finally U17A and B monitor the level of PLANEV+ and through the control signals ARROW OFF and CENTRE...

- 1. Turn the arrows off when the probes are open circuit.
- 2. Allow the QUADRANT signals to control the arrow when the plane is being probed.
- 3. Turn all the arrows on when the probe is a few centimetres from the short.

Vectored Plane Stimulus

Refer to Drive Source schematic

The stimulus runs at power line frequency and provides a nominal 2A (peak) current from top left to bottom right of the plane during the first 180 degrees of the line signal followed by the same signal from top right to bottom left during the second 180 degrees.

The two halves of the stimulus circuit are identical except for the phase of the inputs which allow the steering diodes (D31, D32, D73, D35) to pass current on alternate half cycles. Relay K14 allows the microprocessor to turn the stimulus off and on.

Taking the top circuit as the example, +2A and -2A are the outputs of the 4V RMS transformer winding. As +2A goes positive D31 conducts and attempts to pass current through L1, F1 through its stimulus lead and return through the lead at the opposite diagonal of the board, during this half cycle the other stimulus circuit is inactive.

As current flows through inductor L1 Hall sensor Q12 detects its presence and the monostable U61A is repeatedly clocked, the output of the monostable is OR'd with its equivalent in the other stimulus circuit and if either inductor L1 or L2 is NOT conducting NO_PLANE_DS will be low.

NO_PLANE_DS is monitored by the microprocessor in PLANE SHORTS mode. When the user presses PLANE to activate the mode the 950 will turn on relay K14 on; if no current is detected in L1 or L2, K14 will be turned off.

In order to protect semiconductor devices, D30 and D34 are Schottky diodes which conduct if the stimulus voltage attempts to rise above approximately 0.4 volts. This will occur if the stimulus is not connected correctly. As D30 or D34 conduct, current no longer flows through L1 or L2, the microprocessor registers NO_PLANE_DS and turns off K14. This feature will turn off the stimulus at any time it is disconnected while "Active".

Drive Source

The Drive Source provides both an 80kHz ac low impedance output for non-contact current tracing and an adjustable DC output for non-invasive current measurement and microvolt measurement.

U13 and U19 form a gated oscillator, enabled only in TRACE mode. Q3 and Q4 provide a low impedance output, U13A monitors the output current turning on the front panel DRIVE SOURCE indicator when a current of > approximately 5mA is flowing.

U13D and Q4 comprise a protection circuit which cuts off drive to Q3 should the leads be connected to a negative voltage. D39 provides protection from positive voltages.

Tone Generator

U20D and Q7 form a VCO whose frequency is proportional to the voltage at TONE_GEN or its inverse if INVERT is selected. The output of the VCO is made symmetrical by U21B, which is also gated by the microprocessor to allow the tone to be turned off in the 20V range and during current auto-ranging. U64 is a voltage controlled amplifier providing volume adjustment from the front panel, U22 provides the audio power output.

The following controls are applied to the tone generator:

- 20V range gated off by NO_TONE
- 200mA 2A gated off below 10mA (approximately) and during auto-ranging.
- 2mV and 20mV Invert selected U20A and B detect a band of ± 40µV and turn off the tone in this region, more negative than 40uV oscillator U17D runs causing a unique pulsing tone. Reversed signal also taken to front panel led.
- All resistance ranges Invert is off and at low readings U20A goes high allowing U17D to oscillate and cause a pulsing tone at low readings.
- TRACE as 2mV.

A2D2A

Refer to A–D Converter Schematic

U26 and associated logic interface the μ V AMPLIFIER with the microprocessor allowing it to read the 12bit conversion in a high and low order byte. The data is used for current calculation and system calibration. U28 8-bit D2A convertor allows the computed current to be sent to the TONE GENERATOR and the LCD.

U25 is controlled by the processor to route analog signals from the main modules to the display.

Power Supply.

U32 and U33 provide analog \pm 5 Volt supplies. LK7 or 8 allow the Phase of the line signal to be selected in case of transformer phase change. (This will affect left and right arrows in PLANE SHORTS.) U31 provides a separately regulated 5V supply for the digital systems and relay drive.

U30 Provides a floating +5Volts for the drive source.

+2A and -2A is a floating 4V RMS supply for the Vectored Stimulus.

Note that from Serial N^o. 011265 a line filter was fitted and the line voltage selector switch was replaced by links. The power transformer has undergone several changes — check the *REPLACEMENT PARTS* list before ordering spares.

Microprocessor

The system is based on a Z80 U35 which is reset and shut down by controller U38.

4MHz Resonator X1 is divided by 2 to produce a 2MHz system clock.

Firmware is held in ROM U36, and U34 provides 2K of utility RAM. The remainder of the bus related circuits provide I/O for controlling or monitoring the instrument. U43 and U37 provide appropriate address decoding.

Front Panel (Schematics 1 and 2)

The digital part of the front panel is an extension of the processor system providing a keyboard row and column decoder U49 and U52 and other ports for LED drive.

U57 and associated components form the drive for the Plane Direction arrows and come under the control of the Vector discriminator circuit.

D76 is a backlight array for the LCD whilst U53 provides display A2D conversion and LCD Drive, U56 provides logic level conversion for decimal points and U54 is the LCD.

SECTION 4 – DISMANTLING INSTRUCTIONS

WARNING Service of this instrument should only be performed by skilled electronics service personnel.

There are hazardous voltages inside the instrument when connected to its power supply. REMOVE THE POWER CORD before touching any part of the line input circuit. Note that high voltages may continue to be present for 2 minutes after power is removed until internal capacitors discharge.

Removing the cover

Undo the two screws in the rear of the cover, then lift the cover rear edge first and remove.

The main printed circuit board must be removed before the front moulding or feet can be removed

SECTION 5 – LINE VOLTAGE AND FUSE CHANGING

WARNING Service of this instrument should only be performed by skilled electronics service personnel.

There are hazardous voltages inside the instrument when connected to its power supply. REMOVE THE POWER CORD before touching any part of the line input circuit. Note that high voltages may continue to be present for 2 minutes after power is removed until internal capacitors discharge.

LINE VOLTAGE SELECTION AND FUSE CHANGING

Note: When replacing fuses always use the type and rating stated in SPECIFICATIONS.

Changing the line voltage setting

When changing the line voltage it will be necessary to dismantle the instrument as described in Section 4 — changes may be made as follows:

- 1. Remove the two screws in the rear of the cover and lift off (lift the rear first).
- 2. In early instruments locate the line selector switch and change to the local line voltage.
- 3. In later instruments remove the gold plated links (extract the links with small pliers) and replace them in the locations corresponding to the local line voltage.
- 4. Locate the supply fuse (2 fuses in later instruments) and replace with the value and rating stated in SPECIFICATIONS.
- 5. Replace the cover.
- 6. Erase the marking on the label on the rear of the instrument and mark in the new voltage setting.

NOTE: 100V instruments cannot be changed.

SECTION 6– FAULT DIAGNOSIS

WARNING Service of this instrument should only be performed by skilled electronics service personnel.

Hazardous voltages are exposed on the PCB when the cover is removed. These procedures should only be performed by a technically qualified person aware of the hazards and taking all reasonable care.

TROUBLESHOOTING HINTS

- 1. If the instrument is completely dead check the fuses and line voltage selection. Inspect carefully for signs of damage, loose wires, etc. *Rectify any faults before applying power.*
- 2. If there is no "beep" or flashing LED sequence at switch on, the microprocessor is not operating. Check the internal power supplies, ROM, crystal and microprocessor reset circuits.
- 3. If there is an OHMS fault check the input amplifier in VOLTS mode first, then check the operation of the current generator.
- 4. If ACTIVE cannot be engaged in PLANE SHORTS check the 5A fuses in the stimulus circuit. The connections to the plane drive sockets should also be checked, and the sense coils which should be close around the sensor IC.
- 5. In TRACE mode, for optimum sensitivity tune the circuit to the Trace Probe (Probes may differ).

SECTION 7 – MAINTENANCE AND CLEANING

Cleaning

Clean the unit with a cloth lightly moistened with water with a small amount of mild detergent.

Alternatively, a cloth lightly moistened with alcohol (ethanol or methylated spirit) or isopropyl alcohol (IPA) may be used.

Do not spray cleaners directly onto the instrument.

Technical Support

For technical support contact your local Polar Instruments distributor or Polar Instruments Ltd. at the address at the front of this manual.

Instrument repair

If it becomes necessary to repair the instrument, in the first instance contact the Polar Instruments distributor in your country. In case of difficulty contact Polar Instruments Ltd. at the address at the front of this manual. *Do not send the instrument until shipping instructions have been received from the repairer.*

SECTION 8 – REPLACEMENT PARTS

To ensure correct parts are supplied, orders for replacements should include the following details:

Instrument type Instrument serial number Firmware version (if applicable) Circuit reference (if applicable) and description Note: Parts marked with an asterisk (*) have been subject to modification in later instruments.

Safety critical parts (listed in bold type) must be replaced with parts obtained from Polar Instruments Ltd or your Polar Instruments distributor to ensure continued safe operation.

FRONT PANEL KIT

Part N⁰	Qty	Description	CircuitReference
CEA103	3	10µF Electrolytic	C57, C66, C68
CVD101	1	0.1µF Polyester	C61
CVD102	1	0.01µF Polyester	C62
CVD105	2	0.22µF Polyester	C58, C59
CVD116	1	100pF Ceramic	C60
CVD136	4	0.1µF Mini Ceramic	C67, C69
CVD154 *	2	2n2 Polyester	C700, C701
ICA129	1	7106	U53
ICA130	1	4070	U55
ICA192	3	74HC374	U50, U51, U52
ICA208	1	74HCT373	U49
ICA221	1	74HC139	U57
ICA243	1	4051	U56
LDD116	1	LCD	U54
LDD117	1	Backlight	D76
LED115	12	LED Red	D46-D48, D50-D52, D54, D65-D69
LED116	10	LED Yellow	D53, D55, D56, D57, D58, D59, D60,
-	-		D61, D62, D63
LED117	1	LED Green	D64
MKB154	12	Button Cap	
MPP200	16	3.8mm Spacer	
MPP201	7	4.3mm Spacer	
MQX138	1	28 Pin IC Socket	
MQX238	2	LCD Connector	
QNN304	1	2N3904 Transistor	Q10
RCC127	1	8 x 22K Rpak	RP5
RCF100K	1	100K 1/4W 5%	R195
RCF1M0	4	1M0 1/4W 5%	R194, R198, R199, R200
RCF200R	1	200R 1/4W 5%	R185
RCF22K	1	22K 1/4W 5%	R197
RCF270R	20	270R 1/4W 5%	R174, R175, R176, R177, R178, R179
			R180, R181, R182, R183, R184, R216
			R217, R218, R219, R220, R221, R222
			R223, R224
RCF330R *	4	330R 1/4W 5%	R700, R701, R702, R703
RCF390R	7	390R 1/4W 5%	R186, R187, R188, R189, R190, R214
	L		R215
RCF39R	7	39R 1/4W 5%	R227, R228, R229, R230, R231, R232
			R233
RVB320	1	1K Preset	R196
RVP114	1	100K Panel Pot	R192
RVP115	1	100K Panel Pot (Dual)	R191
SWB141	12	Push-Button	S2, S3, S4, S5, S6, S7, S8, S9, S10,
			S12, S13, S14
WMA196	1	Cable Assembly	JP4
WMA198	1	Headphone Cable	
WMA199	1	I/P Board Cable	
WMA206	1	Drive Source Cable	

MAIN BOARD KIT

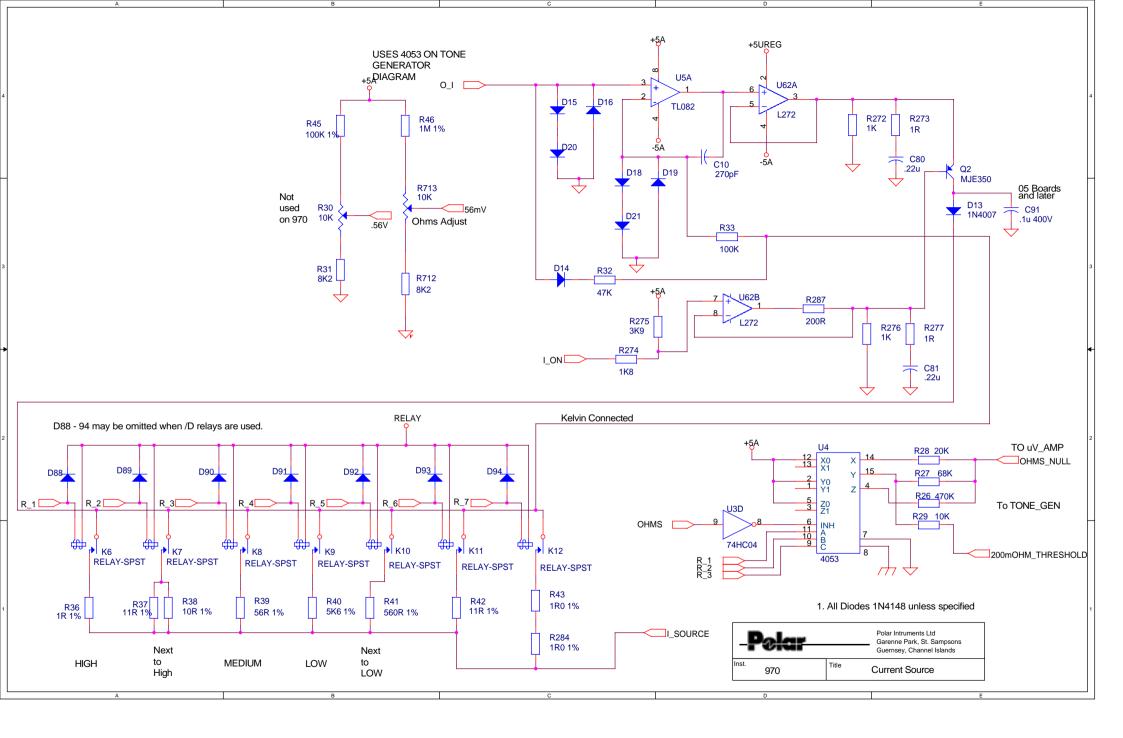
Part N ^o	Qty	Descriptio	on	CircuitReference
CEA103	12	10µF	Electrolytic	C4, C5, C29, C41, C49, C50, C52,
			,	C53, C71, C75*, C78*, C82
CEA105	1	220µF	Electrolytic	C32
CEA117	4	2,200µF	Electrolytic	C40, C43, C45, C46
CEA122	2	1µF 63V	Electrolytic	C75*, C79*
CVD101	24	0.1µF	Polyester	C1, C6, C7, C8, C9, C14, C15, C17,
		•		C18, C26, C31, C33, C56, C64, C65
				C70, C72, C74, C75*, C76, C78,
				C79*, C85, C90*
CVD102	13	0.01µF	Polyester	C3, C20, C24, C27, C28, C30, C35,
				C39, C73, C77, C89, C705, C706
CVD105	3	0.22µF	Polyester	C36, C80, C81
CVD106	2	82pF	Ceramic	C19, C38
CVD109	30	0.1µF	Radial Ceramic	C44, C48, C83, C86, C702, C707,
				C714
CVD113	3	1µF	Polyester	C23, C34, C88
CVD115	3	33pF	Ceramic	C21, C54, C55
CVD116	1	100pF	Ceramic	C708
CVD130	1	0.022µF	Polyester	C2
CVD143	2	0.1µF	Polyester	C51, C91
CVD144	5	0.47µF	Polyester	C11, C12, C13, C16, C37
CVD146	2	1nF	Polyester	C92, C93*
CVD147	2	4n7	Polyester	C703, C704
CVD148	2	1nF	Polyester	C90*, C93*
DBA102	2	Rectifier Bridge 1.2A		D43, D44
DSP101	40	Diode Sigr	nal 150mA	D2, D3, D4, D5, D6, D7, D8, D9,
				D10, D11, D12, D14, D16, D18, D19
				D21, D25, D37, D38, D40, D41, D42
				D72, D79, D80, D81, D82, D84, D85
				D86, D87, D88, D89, D90, D91, D92 D93, D94, D96, D97
DSP102	2	Diode Power 1A 1kV		D13, D39
DSP102	2	Diode Schottky 7.5A		D30, D34
DSP105	6	Diode Schollky 7.5A		D30, D34 D31, D32, D35, D73, D77, D78
DZA303	2	Zener Dio		D1, D83
DZA320	1			D29
EPM112	1	Zener Diode 5V1 Buzzer		SP2
FCA124 *	4		/ire ended	F1, F2, F3, F4
FCA130	1	5A Fuse Wire ended 0.5A T Wire ended		F7
FSW122	1	Firmware		U36
ICA106	4	LM339N		U13, U17, U20, U61
ICA116	1	LM339N MC14016BCP		U23
ICA122	1	MC14016BCP MC14013BCP		U21
ICA122	2	ICL7650CPD		U1, U12
ICA126	1	CA3140E		U16
ICA128	3	MC7805CT		U30, U31, U32
ICA158	1	MC74HC00N		U15, U18*
ICA161	1	MC74HC00N MC7905CT		U33
ICA162	1	LF353N		U60
ICA164	1	74HC132		U18*
ICA165	2	LM311N		U10, U14
10/100	~			

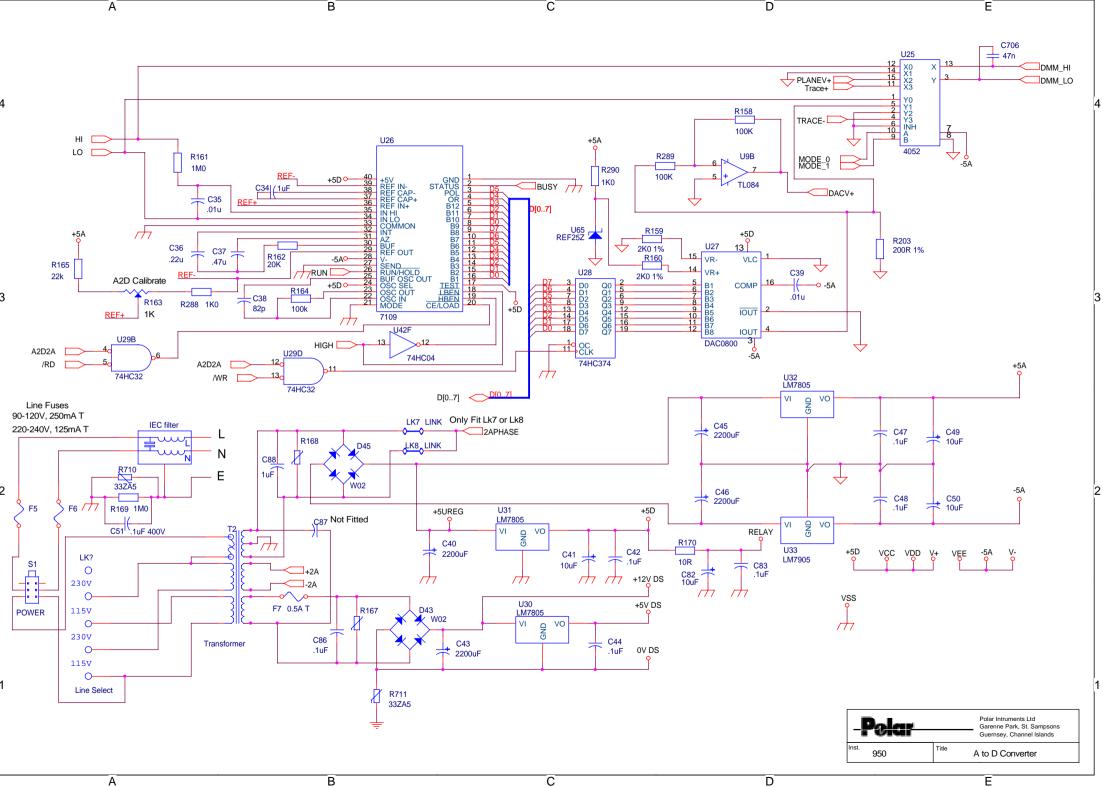
10 4 4 9 9		007410745	
ICA166	1	CD74HC74E	U44
ICA173	1	MC74HC04N	U3
ICA186	2	TL084CN (or LF347N)	U2, U9
ICA187	1	LM386N-1	U22
ICA188	1	Z80	U35
ICA189	1	TL 7705	U38
ICA190	2	74HC138	U37, U43
ICA191	1	74HC08	U41
ICA192	6	74HC374	U28, U39, U40, U46, U47, U63
ICA195	1	74HC32	U29
ICA198	1	74HC245	U45
ICA208	1	74HCT373	U48
ICA212	1	L272	U62
ICA234	1	Quad Opto-Isolator	U19
ICA239	1	6116 RAM	U34
ICA241	3	4052B	U8, U25, U59
ICA245	1	DAC0800	U27
ICA263	2	74HC4053	U4, U24
ICA265	2	Ratiometric Hall Sensor	Q11, Q12
ICA266	1	CA3080E	U64
ICA267	1	ICL7109	U26
ICA268	1	REF25Z	U65
ICA269	3	TLC279	U6, U7, U58
ICA209	1	TL0279	U5
	1	74C04	U42
ICA305	-		
IND107	1	10uH	L700
IND105	2	Inductor 10TURN	L1, L2
LDD115	1	4MHz Ceramic Resonator	X1
MAA123	2	Fuseholder	F5, F6
MQX138	1	28 PIN IC SKT	
MQX139	2	40 PIN IC SKT	
MQX140	1	PIN HEADER	JP3
MQX158	2	2-Way Header	JP9,JP13
MQX259P3	2	3 X 1 Pin Header	JP10, JP12
MQX259P10	1	10 X 1 Pin Header	JP11
MQX237	4	6.35mm Spade Connector	
MQX284	1	Latched Header	Vertical 40 Pin
MQX299 *	2	Link	Line Select
MQX300 *	5	1mm Socket	
QNN304	2	2N3904	Q3, Q8
QPP102	3	2N3906	Q4, Q7, Q9
QPP103	1	MJE350	Q2
RCC103	1	120R 5%	R7
RCC108	1	68R 2W 5%	R102
RCC120	1	3K3 x 8 SILPAK	RP1
RCC127	5	8 x 22K SILPAK	RP2, RP3, RP4, RP6, RP7
RCC143	2	2R2 11W	R125, R126
RCC161	2	V33ZA5	R710, R711
RCF100K	20	100K 5%	R6, R7,R17, R33, R72,.R78, R83,
	20		R93, R128, R130, R138, R152,
			R154, R158, R164, R247, R259,
			R264, R289, R297
RCF100R	2	100R 5%	R79, R298
	L 4	10011 070	1110,11200

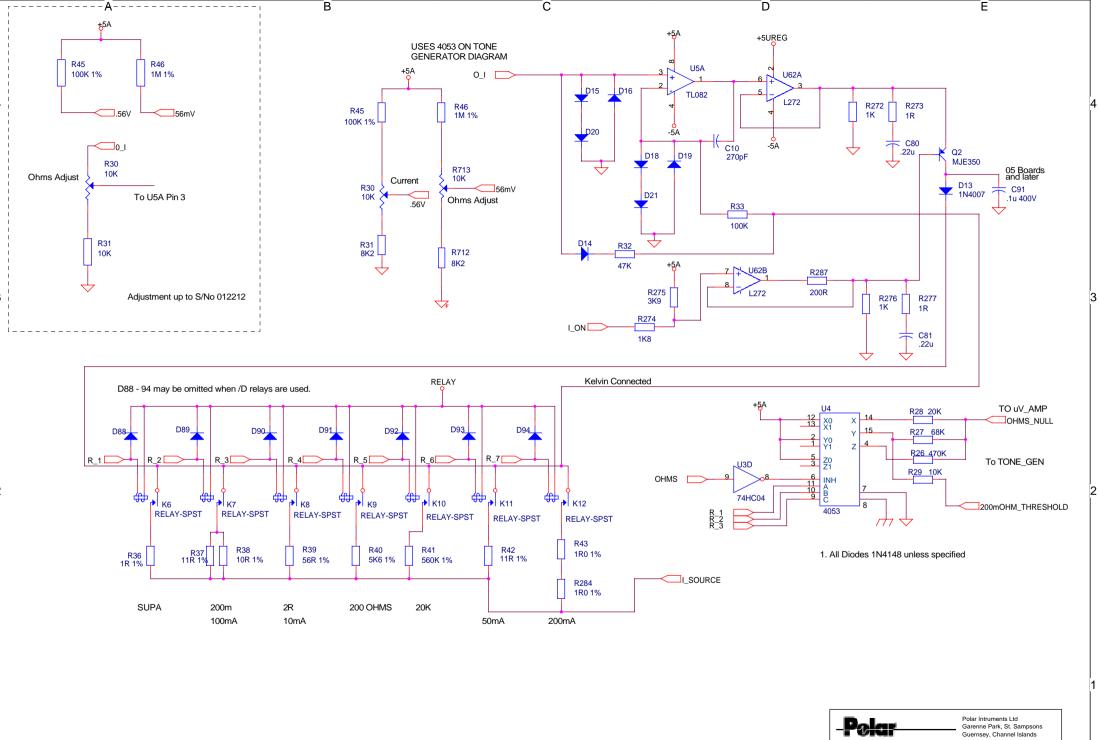
RCF10K	25	10K	5%	D10 D00 D01* D60 D64 D74
RUFTUR	25	IUK	5%	R12, R29, R31*, R63, R64, R74, R75, R86, R88, R89, R112, R124,
				R127, R147, R155, R171, R207,
				R208, R209, R256, R260, R265,
				R279, R281, R282, R717
RCF10M	1	10M	5%	R251
RCF10R	1	10R	5%	R174, R714
RCF150K	2	150K	<u> </u>	R2, R244
RCF150K	1	150K	<u> </u>	R28*
RCF15K RCF1K0	-	15K 1K0	<u> </u>	R15, R16, R18, R21, R23, R92,
RUFIKU	25	TKU	5%	R15, R16, R18, R21, R23, R92, R100, R109, R129, R201, R206,
				R213, R234, R235*, R236, R237,
				R213, R234, R233, R230, R237, R253, R253, R258, R263, R269,
				R272, R276, R286, R290
RCF1K2	2	1K2	5%	R140, R142
RCF1K5	1	1K5	<u> </u>	R288
RCF1K8	2	1K8	<u> </u>	R144, R274
RCF1M0	3	1M0	<u> </u>	R144, N274 R145, R161, R172, R715
RCF1M0 RCF1R0	3			, , ,
		1R0	5%	R4, R273, R277
RCF200R	4	200R	5%	R8, R239, R245, R287
RCF20K	6	20K	<u> 5% </u>	R22, R28*, R162, R240, R241, R246
RCF22K	6	22K	5%	R133, R134, R136, R137, R157, R165
RCF22R	1	22R	5%	R268
RCF270R	1	270R	5%	R148
RCF2K2	2	2K2	5%	R242, R271
RCF2M2	1	2M2	5%	R151
RCF2R2	2	2R2	5%	R5, R103
RCF330R	1	330R	5%	R235*
RCF360K	2	360K	5%	R243, R280
RCF390R	3	390R	<u> </u>	R108, R122, R173
RCF3K9	3	3K9	5%	R104, R105, R275
RCF470K	7	470K	5%	R26*, R80, R153, R156, R249, R262
	1	4701	570	R270
RCF47K	11	47K	5%	R32, R90, R91, R131, R132, R139,
				R141, R149, R150, R261, R267
RCF4K7	10	4K7	5%	R19, R82, R110, R111, R250, R254,
				R255, R278, R294, R296
RCF4M7	2	4M7	5%	R106, R107
RCF560K	1	560K	5%	R1
RCF56K	1	56K	5%	R27*
RCF56R	3	56R	5%	R20, R24, R257
RCF5K6	4	5K6	5%	R101, R135, R143, R248
RCF68K	1	68K	5%	R27*
RCF8K2	2	8K2	5%	R31*, R712
RCF820K	1	820K	5%	R26*
RCF91K	2	91K	5%	R123, R291
RCT100K	5	100K	1/4W 1%	R45, R58, R59, R60, R68, R99
RCT10K	8	10K	1/4W 1%	R51, R52, R53, R55, R57, R292,
				R293, R295
RCT10R	1	10R	1/4W	% R38
RCT113K	1	113K	1/4W	1% R95
RCT11R0	2	11R0	1/4W	1% R37, R42
RCT180K	1	180K	1/4W	1% R87

RCT1K	1	1K 1/4W	1%	R3
RCT1M0	3	1MO 1/4W	1%	R46, R54, R56
RCT1R0	3	1RO 1/4W	1%	R36, R43, R284
RCT200R	1	200R 1/4W	1%	R203
RCT20K	2	20K 1/4W	1%	R11, R96
RCT220K	1	220K 1/4W	1%	R97
RCT24K	1	24K 1/4W	1%	R14
RCT2K0	3	2K0 1/4W	1%	R10, R159, 5160
RCT430K	1	430K 1/4W	1%	R204
RCT470K	1	470K 1/4W	1%	R13
RCT560K	1	560K 1/4W	1%	R41
RCT56K	1	56K 1/4W	1%	R40
RCT56R	1	56R 1/4W	1%	R39
RCT75K	1	75K 1/4W	1%	R205
REL111	9	Reed Relay		K2, K3, K6, K7, K8, K9, K10, K11, K12
REL112	2	2-POLE Reed Relay		K1, K4,
REL113	1	SPNO 5A Relay		K14
RVB315	1	100K Preset		R94
RVB316	2	10K Preset		R30*, R713, R716
RVB319	1	10K Preset		R30*
RVB320	1	1K Preset		R163
RVB323	1	100K Preset		R85
SWB133	1	Power Switch		S1
SWB143	1	Line Selector Switch		S15*
TXM125	1	Power Transformer		T2*
TXM146	1	Power Transformer		T2*
WMA108	2	0.5"Link		LK8, R252

MECHANICAL KIT


0Part N⁰	Qty	Description	CircuitReference
CVD155 *	5	470pF Polypropylene	C709, C710, C711, C712,
			C713
EPM111	1	Loudspeaker	
FCA112	2	Fuse 250mA T	F5*, F6* 115V
FCA119	2	Fuse 125mA T	F5*, F6* 230V
FCA121	2	Fuse 160mA T	F5*,F6* 230V
FCA122	2	Fuse 315mA T	F5*,F6* 115V
IND107 *	1	10uH	L701
IND109	1	Ferrite Clamp	
MCA138	1	Enclosure Top	
MCA139	1	Enclosure Bottom	
MCA143	1	Front Moulding	
MKB127	2	Knob – Cap grey with line	
MKB128	2	Knob – Grey push on	
MKB153	1	Button (Round Black)	
MMP107	5	Nylon Cable Tie 75mm O/A	
MNS107	17	K30 x 6 self tap	
MNS117	2	M3 x 10 Pan Hd	
MNS163	2	M3 x 12 Csk	
MNS164	4	K30 x 10 self tap	
MNS175	2	M3 Flange nut	
MNS176	2	K30 x 8 self tap	
MPP142	2	PCB support	
MPP155	1	Cable Clip	
MPP191	2	Tilt Assembly Leg	
MPP193	4	Bumper Foot	
MPP198	2	Tilt Assembly Base	
MPP210	1	IEC Inlet Boot	
MPP230	3	Cable tie	
MPP231	2	Insert Cover	
MQX154	1	Din Socket 5 x 45'	
MQX155	1	Din Socket 5 x 60'	
MQX158	1	2-Way Header	
MQX179	1	4mm Red Socket	
MQX210	1	4mm Blue Socket	
MQX222	1	3.5mm Stereo PCB Jack	
MQX223	1	5 Pin Din "Domino", Polarised	
MQX224	1	4mm Yellow Socket	
MQX225	1	4mm Green Socket	
MQX254 *	1	IEC Inlet Connector	
MQX314 *	1	IEC Filtered Inlet	
MWP233	1	Front Panel Label	
MWP234	1	LCD Window Label	
MWP235*	1	Rear panel Label	
MWPD1057*	1	Rear Label	
MWPD1079	1	Flexishield	
RCC129	2	82ZA2 Varistor	R705, R710
RCC133	4	22ZA1 Varistor	R706, R707, R708, R709
WMA104	0.25m	Green/Yellow wire	
WMA108	1	0.5" Link	


TONEOHM 950 SERVICE MANUAL


WMA197	2	Speaker Lead	
WMA202*	4	Plane Cable Blue	
WMA305*	1	Plane Drive Cable	

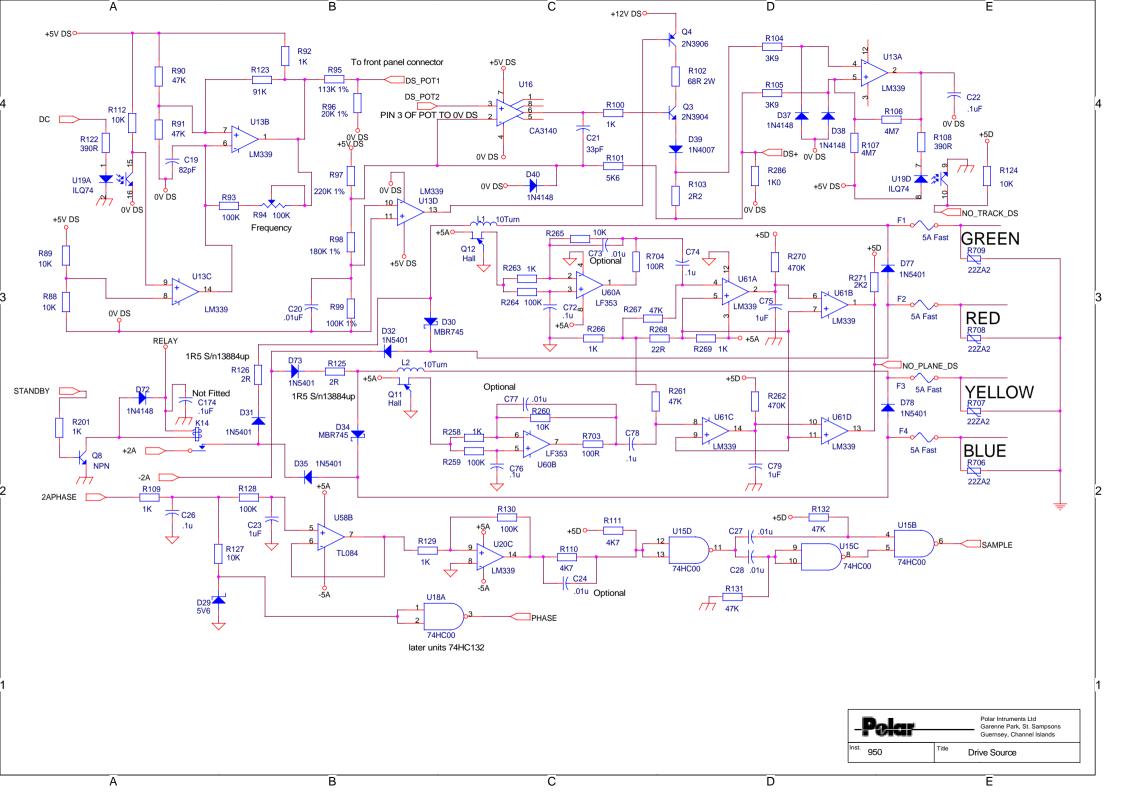
SECTION 9 – SCHEMATIC DIAGRAMS

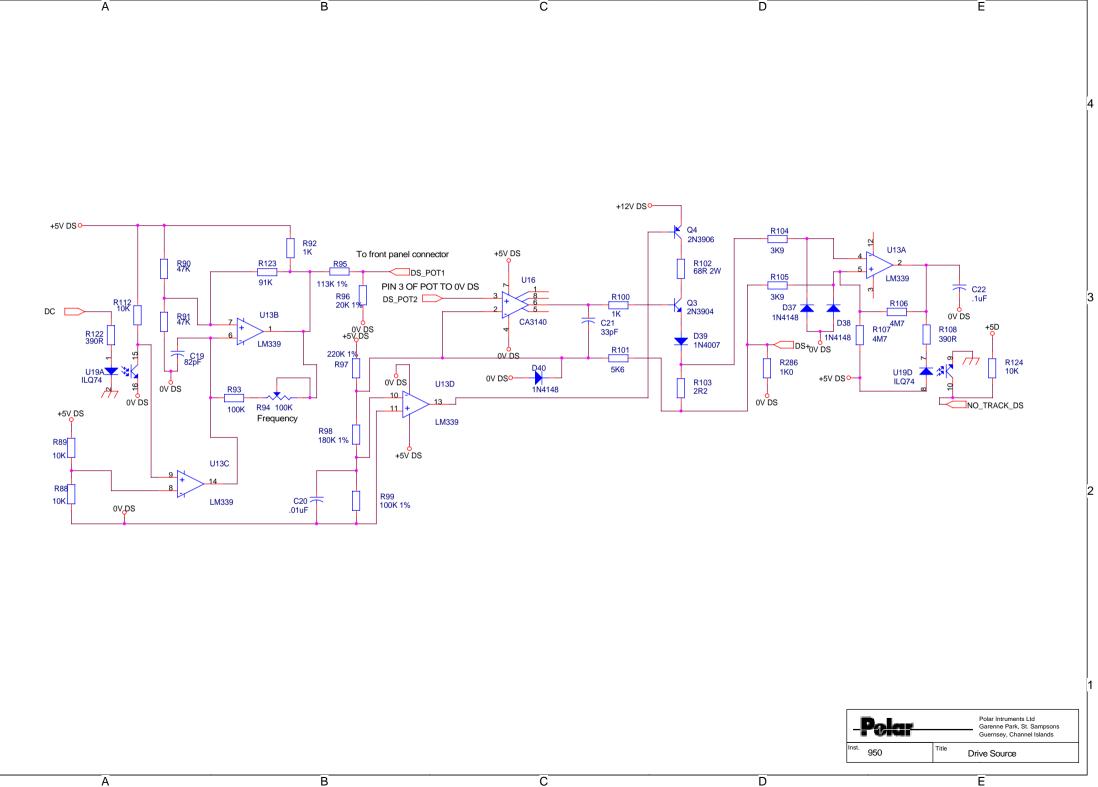
This page is intentionally blank.

950 Title Current S

Inst

D

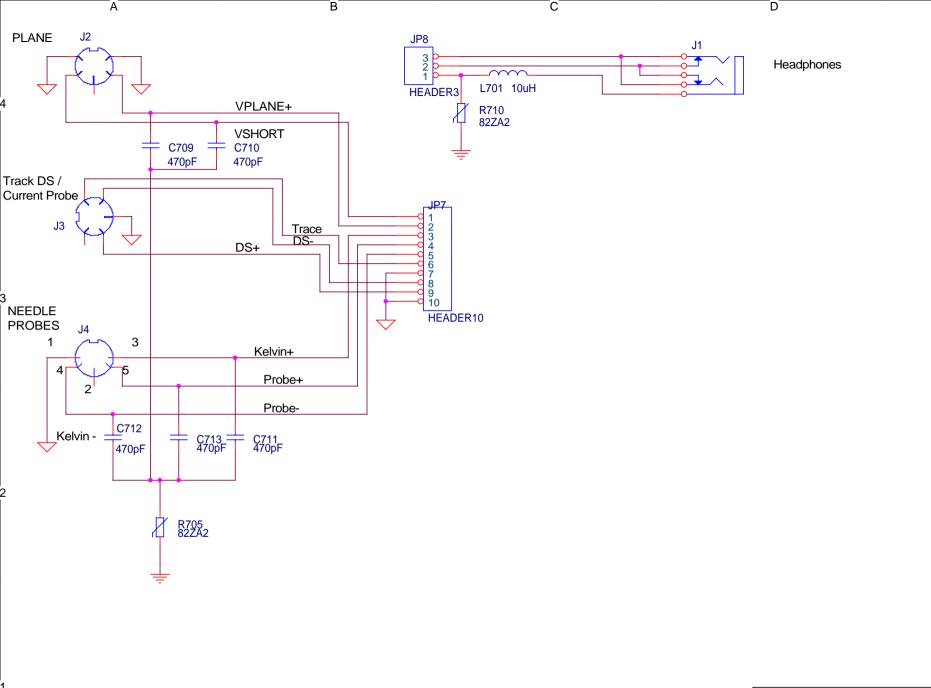

Current Source


E

С

В

Α



С

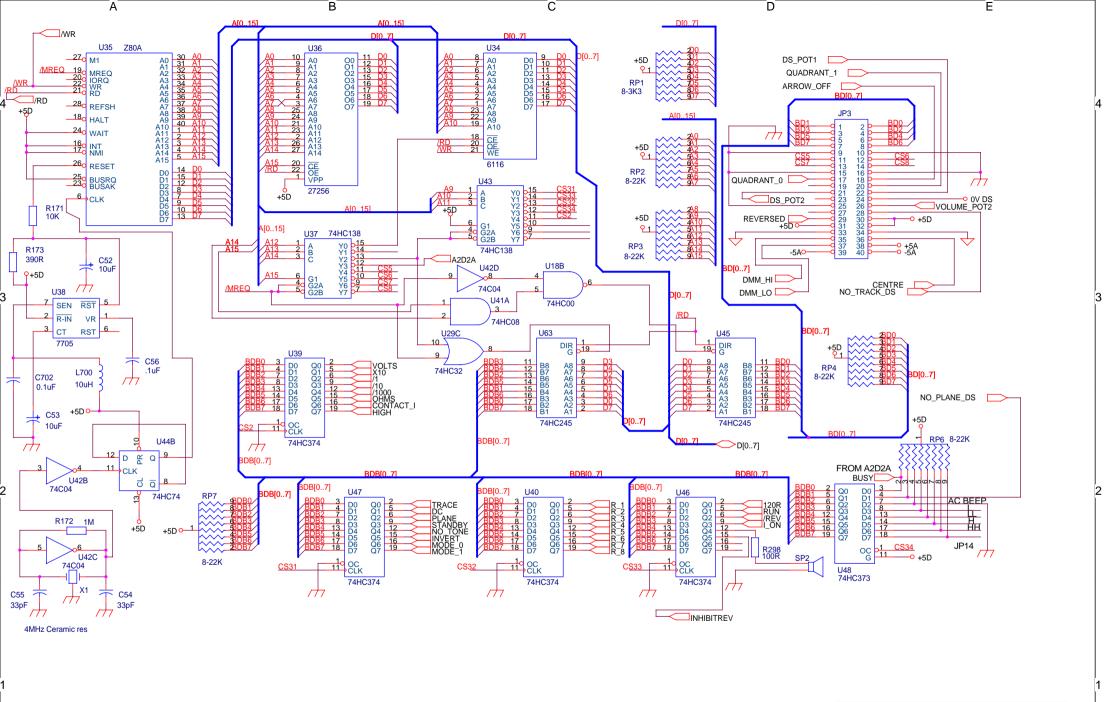
D

Е

	-Pe lar	Polar Intruments Ltd Garenne Park, St. Sampsons Guernsey, Channel Islands
Inst. 950 Title Input Sockets	Inst. 950	Title Input Sockets

D

E

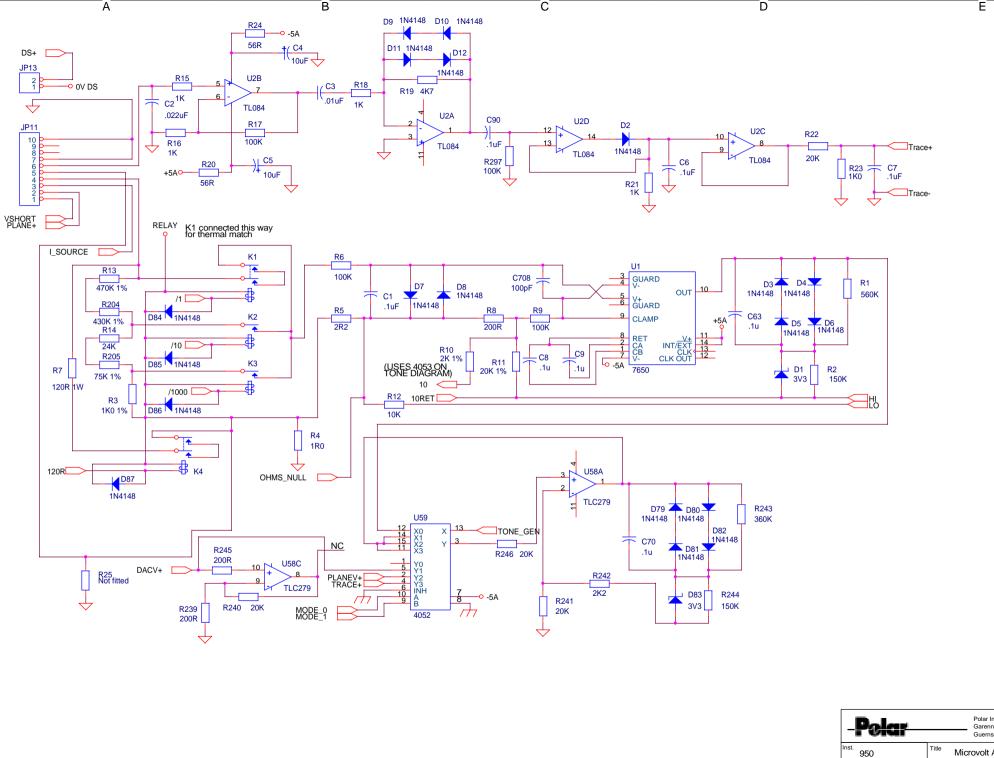

E

3

2

В

A


Е

С

В

Α

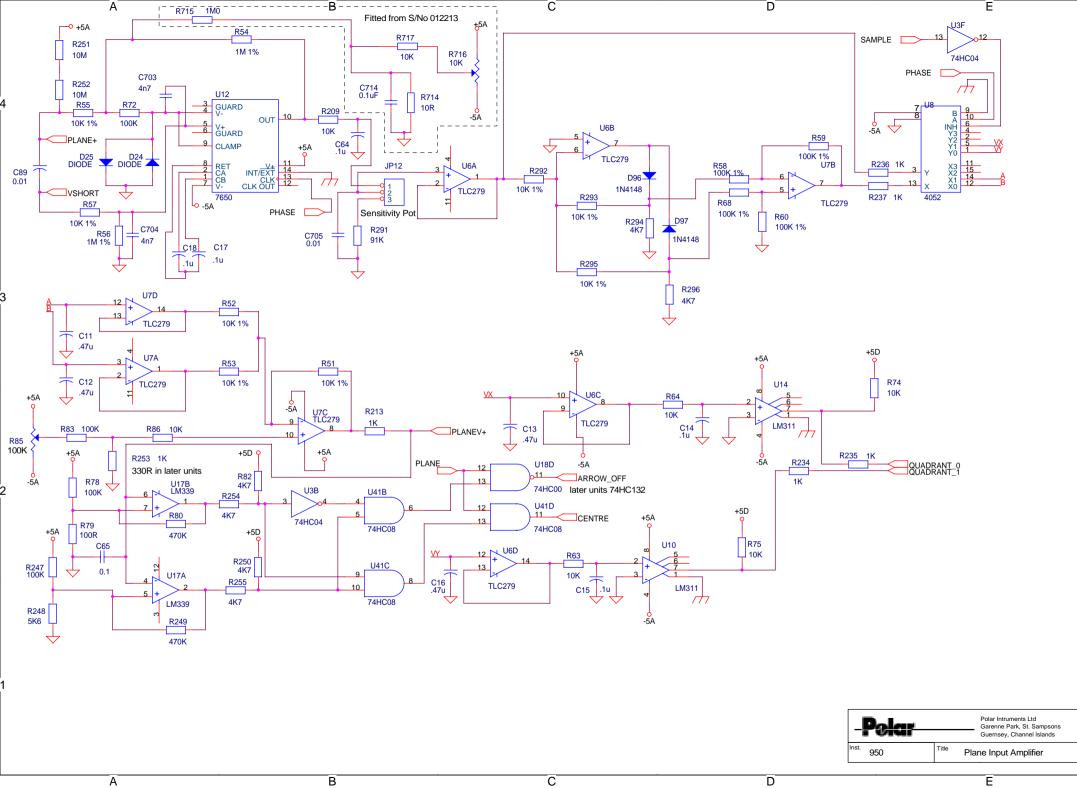
D

Polar Intruments Ltd Garenne Park, St. Sampsons Guernsey, Channel Islands Microvolt Amplifier

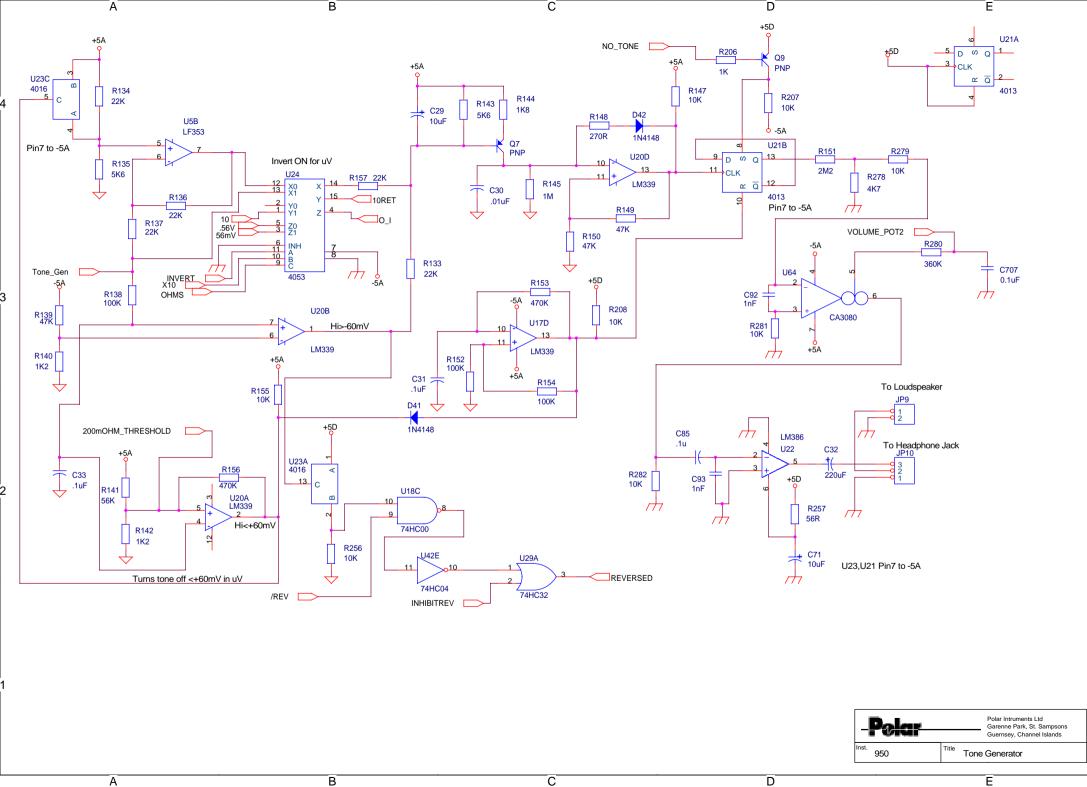
Е

4

3


2

1

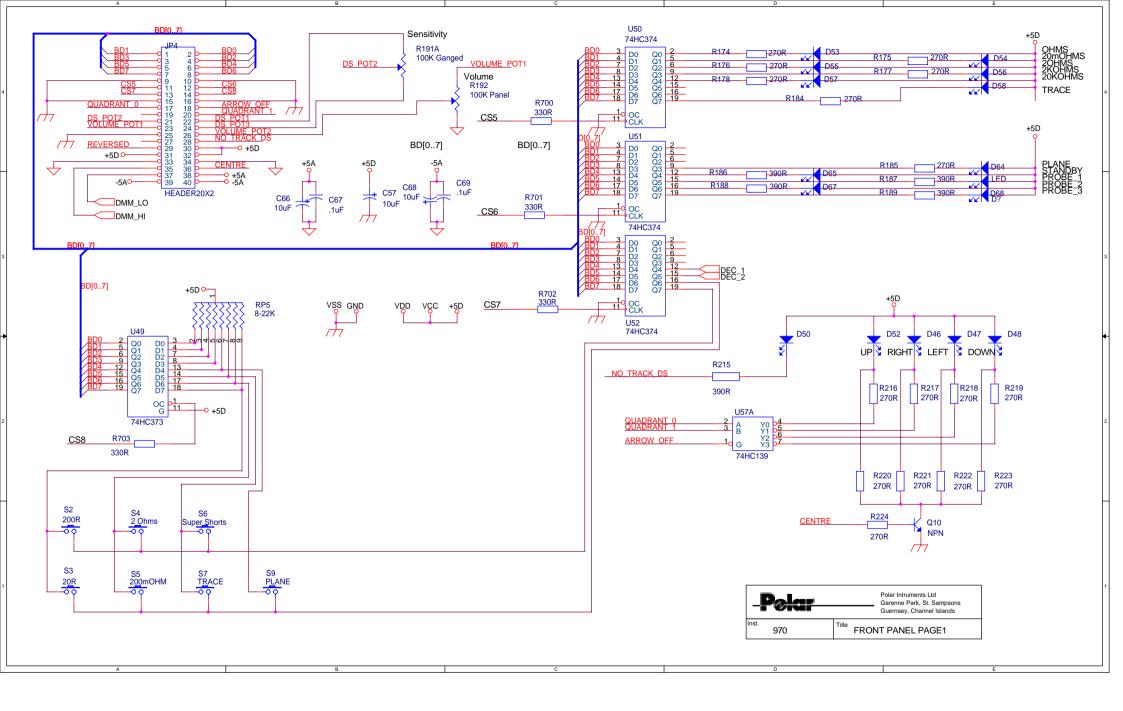

D

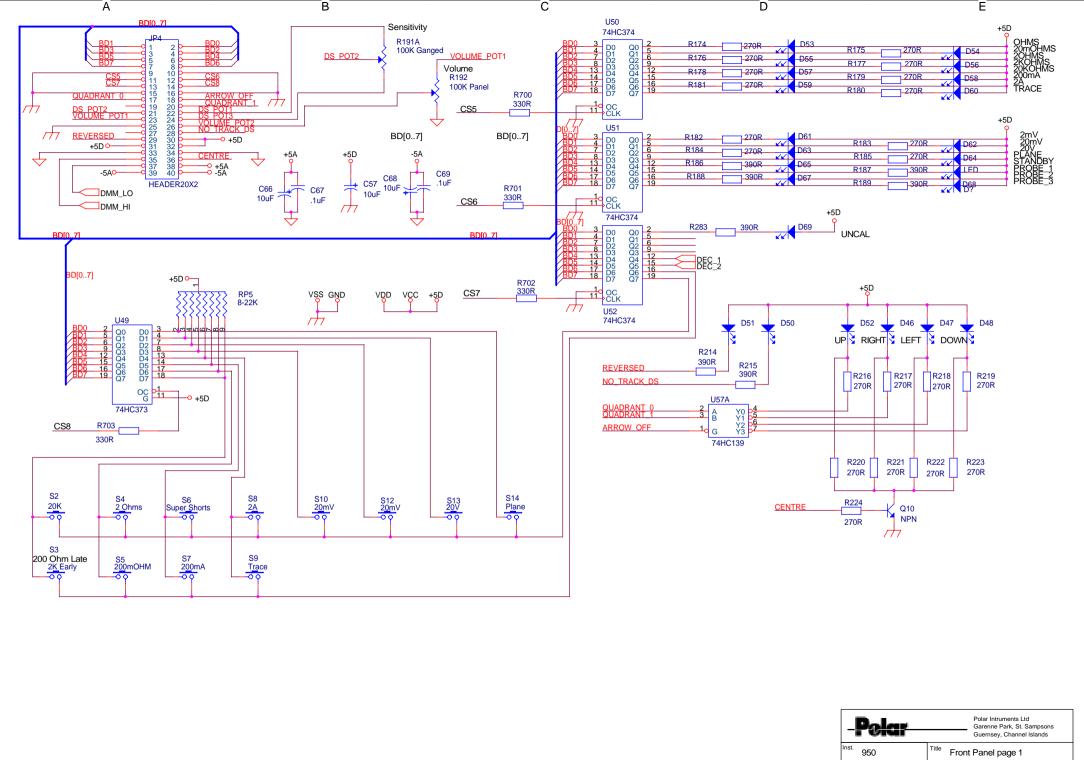
В

Α

Δ

С


Α


D

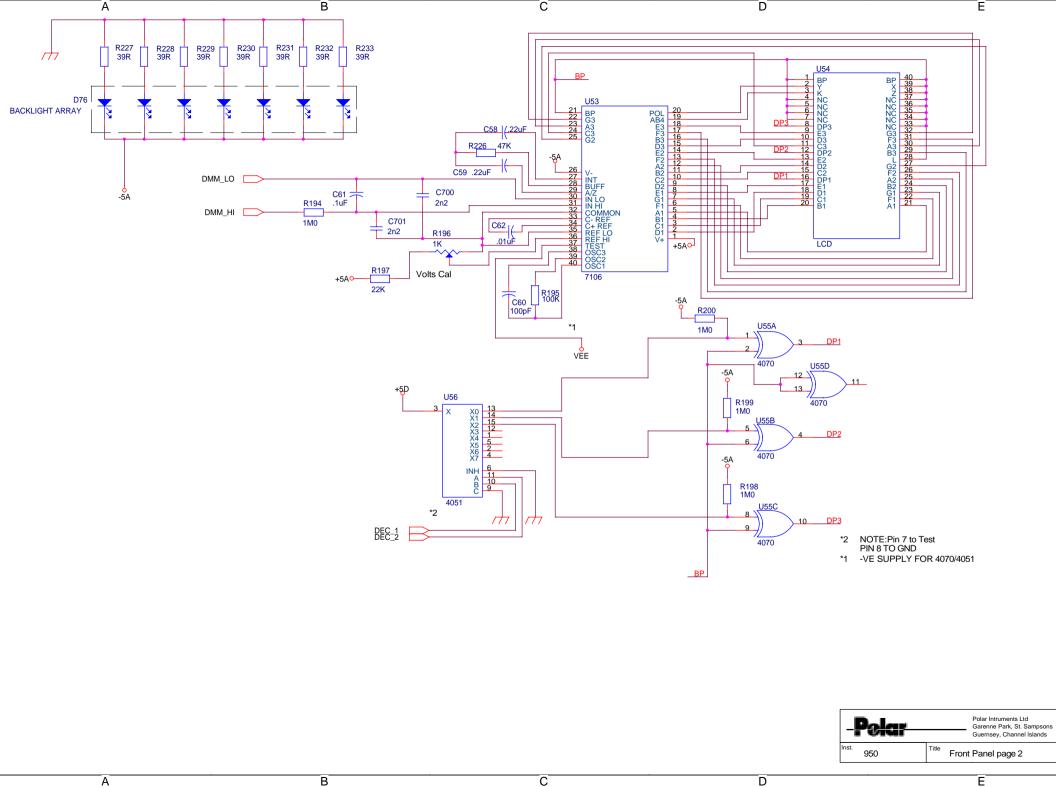
Δ

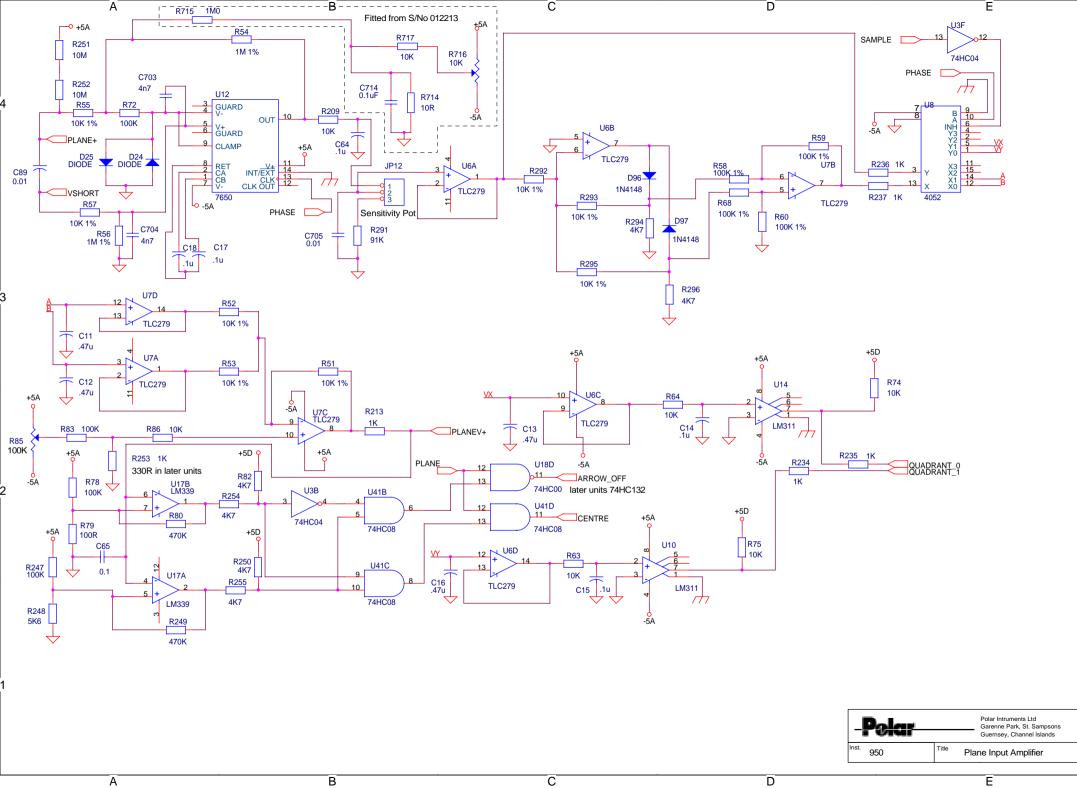
3

2

С

Α


В


D

Е

3

2

Δ